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Origin of multikinks in dispersive nonlinear systems
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We developthe analytical theory of multikinkr strongly dispersive nonlinear systemsonsidering the
examples of the weakly discrete sine-Gordon model and the generalized Frenkel-Kontorova model with a
piecewise parabolic potential. We reveal that there arem&ifks for this model, but there exidiscrete sets
of 277N kinks for allN>1. We also show their bifurcation structure in driven damped systems.

PACS numbgs): 05.45.Yv, 05.50+q, 05.70.Ln, 46.40.Cd

Nonequilibrium dynamics of many physical systems canmensionlessform, the equations of motion for the atomic
be characterized by the creation and motion of topologicatlisplacements,, can be written as
excitations or defects. In particular, when a nonlinear system
possesses a degeneracy of its ground state, such excitatiotg= Vi, (8o+ Ups1—Uy) — Vi(@o+ Uy —Un—1) — Weud Up),
arekinks the simplest and probably most studied nonlinear ) o ) ) )
modes. The concept of kinks is vital for many physical prob-Where Viy(u) is an effective interaction potential with the
lems such as dislocation and mass transport in solids, chargg@uilibrium distance,, andWs,{u) is a substrate potential
density waves, commensurable-incommensurable phase traffith period a. For small anharmonicity, i.e., whefuy .,
sitions, conductivity, tribology, Josephson transmission lines;” Up|<ap, the potentiali,(u) can be expanded into a Tay-
etc.[1]. lor series to yield(see details in Ref[1]): u,—g(Uns1

In application to problems in solid state physics, the+Un—1—2U,)+Wg{u,)=0, where g=Vj(ao). In the
kink’s motion is strongly affected by the inherent lattice dis- quasi-continuum limit, taking into account a higher-order
creteness. Earlier numerical simulatig@$of the kink's mo-  dispersion, we obtain the normalized equation
tion in a lattice described by the discrete sine-Gor(®6) ,
equation, also known as the Frenkel-Kontordk&) model Ure = Uxx~ Bt Weud U) =0, @

[1], demonstrated a number of interesting features not Ob\ivhereW(u) has rescaled period2and, for harmonic inter-
served in the dynamics of solitons of integralb®th con- action, B=a%/12 ’

tinuous and discrejemodels. In particular, Peyrard and g4 ation(1) takes into account the effect of lattice dis-
Kruskal[2] found that a single kink becomes unstable whenreteness through a fourth-order dispersion term, angfor

it moves in a discrete Igttice at sufficiently large velocity, _ and W/, {u)=sinu, it transforms into the well-known
whereas two(or morg kinks are stable and propagate aseyactly integrable SG equation that has an analytical solution
multikinks The former effect is associated with resonant in-¢g5, 4 single 27 kink moving with velocity v, u
teraction between a kink and radiatif8], and resonances =4tan‘1{exp[(x—vt)/\/m]}. Similar kinks exist for a
are even observed experimentgl}. In contrast, the latter | aiher general topology of the substrate poterii&l,{u)
phenomenon, i.e., the formation of multikinKs, .. has no [1]. However, our aim in this paper is to studyclass of
clear analytical explanation yet(see Ref[1]). localized solution®f Eq. (1) for B#0 in the form of 27N
Recently, different physical systems have been studieghyltikinks for N>1.
numericallywhere multikinks are found to play an important  First, following the original study of Peyrard and Kruskal

role. For example, multikinks are responsible éomobility  [2], we consider the harmonic substrate potential
hysteresisn a damped driven commensurable chain of at-

oms|[5]. In arrays of Josephson junctions, instabilities of fast W, u)=1-cosu. 2

kinks lead to the generation dfunched fluxon stateslso

described by multikink models]. We look for kink-type localized solutions of Eql) that
The main purpose of this paper is to provide the stegmove with velocityv(v?<1), i.e., we assumei(z)=u(x

towardsan analytical theory of multikinki strongly disper- —vt). Linearizing Eq.(1) and takingu(z)~e**, we find

sive nonlinear nonintegrable systems, including the analysisigenvalues\ of the form,

of the existence and codimension f-kink states. In par-

ticular, we consider a weakly discrete SG model and demon- 2_ t o J1-v9%+ 48

strate the existence af finite number of multikinkdue to a A 2B (L= D=V =07+ 48],

higher-order dispersion. We also fiadalytical solutions for

multikinks and describe the effect of an external field andso that for3>0 there always exisiwvo realandtwo purely

damping on their existence and qualitative features. imaginary eigenvalues. Thus, the origin=0 is a saddle-
We consider the dynamics of a commensurable chain ofenter point and hence kinks, which are homoclinic solutions

atoms in a periodic substrate potential. In a normali@id to u=0(mod2r), should occur foisolated valuef v for
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FIG. 1. The four 4r-kink solutions of Eq.(1) with W, u)
=sinu propagating at the velocity values given in the legend.

fixed B (see Refs[7] and[8]). That is they are of codimen-

sion one. Moreover, this codimension is only true if the so-
lutions are themselves reversible, that is invariant under one

of the transformations:

R;: u(mod2w)— —u(mod27w), u’'——u", t——t,

n

Ry: u——u’, u"—-Uu", t—-—t,
where prime stands for differentiation with respectzto

To find all solutions of this typefirst we fix 8=1/12,
which corresponds t@=1. Then, we perform numerical

shooting on the ordinary differential equation fofz) using
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FIG. 2. Examples ofa) 67 and(b) 87 kinks of Eq.(1) with the
potential(2) at the velocity values given in the legend.

Finally, it appears that the above structuréaigely inde-
pendentof B. Figure 3 shows the results of continuation
(using the method for homo/heteroclinic orbits in the
boundary-value software AUTQL1]) of the four 4= kinks
in the (v, 1//B) plane. These curves as#most identicalto
those obtained numerically in Ref2] for the discrete SG

a well-established Newton-type method for homoclinic/€duation. Note that no curve passes throughl, they only

heteroclinic trajectories in reversible systefsse Ref[9]).
The first result is that there exist® 2 -kink solution at al)
except in the artificial limity?>— — (see comment below
Instead, we find a discrete family ofmkinks; specifically
there exisbnly four such solutionat four different values of
v. The first solution has an analytical forfhQ]
u(z)=8 tan ‘exp{(38) ¥4z}, ©)
where v2=1-2./g/3, i.e., for our choice ofB, v{}
=\2/3. Other values are: v{?=05948..., v

v Uan
=0.423B..., andv{Y=0.211® . ... All these solutions

ks

reach there asymptotically #&—0. In the process the slope
of each kink at its midpoint steepens, so that the solution
becomes singular in the limit.

It is important that the above numerical results may be
verified by the construction axact solutions in closed form
when the substrate potential is approximated by a piecewise
parabolic potential that generates in EG) the effective
force,

Weud u)
u—2nm:(2n—1) 7+ 7/2<u<2nm+ 7l2,
2n+1)m—u2nm+w2<u<(2n+1) 7+ 7/2.

are presented in Fig. 1. We may regard this discrete family as

part of an infinite sequence of bound-states of twoKnks
that converges to the limit of infinite separation at a value o
v?<0. Actually, the key parameter js=1—1v2, and further
numerical evidence reveals that the bound states converge
u=c at which value a zr kink exists only formally.

In addition to the 4r kinks, numerics further reveals
values at which N kinks occur for allN>2. Figure 2
shows several examples ofrféand 87 kinks. According to a
dynamical systems theory resylf], on the existence of

bound states of homoclinic solutions to saddle-center equi-

libria in reversible Hamiltonian systems, again thinking of
the 4ar kinks as bound states ofi2kinks, one should expect
to seeprecisely twds 7 kinks for eacht 7 kink. These would
occur atv{)* satisfying v{) " <v{) <v{)*: all eight of
which are depicted in Fig.(8). Moreover, there would be
two infinite sequences o8 kinks at v§:)* such that

v p{) from below asj—o and v{* —v{) from

tFor simplicity we fix 3=1/12 and then look for kinks mov-

ing with velocity v(u=1-v?), by solving the piecewise-
I{'gear equation fou(z). This defines a four-dimensional dy-
namical system in the phase space;,u,u”,u”)e

(— m/2,3w/2] X R3. The phase space is separated into two

distinct domains:

10 1

5 2!
s

above.Our numerical simulations have revealed precisely FIG. 3. Two-parameter continuation ofmkink solutions for

this structure of all multikink families

the model(1) with the harmonic nonlinearity2).
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FIG. 5. The kink's velocityv <O and maximum amplitude
against external forc&>0 for the simplest 4 kink with vé
30 35 =0.05. Note that each limb of the curve spirals back on itself. The
insets illustrate example solutions on the locus.
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FIG. 4. The functiorK(v) for multikinks of Eq.(1) with piece-
wise parabolic potential. Inset: the corresponding Kinks at the define a “test function” for 4r kinks K(v:zy,z,)

associated values given in the legend. :=U35(2,). Using the above construction, tHscan be writ-
ten in closed form in terms af, z,, andz,. The unknown
transition pointsz, , are the solution to given transcendental
equations, in each case only the first solution of which has
meaning.

Figure 4 shows a graph &€ as a function ofu=1—1v?
€ (min, 1), which has been computed using MAPLE with the
implicit equations solved for their smallest positive solu-
tions. The five zeros df correspond to 4 kinks, graphs of
which are shown in the insert to the figure. These zeros occur
o ; : for v=0.64064609, 0.49870155, 0.37835717, 0.26634472,
iozrr;ezinknowrzﬁzz, and is in Region 1 again for & 'y ) 127594 It is also possible to construct solutionsfor

£ Mmin in a analogous manner, but with the solution in Re-

The boundary condition can be satisfied by noticing thaglon 2 replaced by one corresponding to complex eigenval
h soluti =0 (the fi int of iti )
such solutions ar=0 (the first point of transition between ues. This gives the additional solution fer=0.833706.

Regi 1 and ti 0)=mx/2, u'(0)=\#/2, u"(0 ) \ . -
egions 1 and Psatisfy u(0)=/2, u'(Q)=hm/2, u’(0) In this way, we findanalytically a finite set ofv values

=\%7/2, and u”(0)=\%m/2, where N?=6(\u?+2/37 . . . ; : .
— ) is the unique( re)zal positive eigenvalue o(f tﬁe linear SyS_glvmg 47 kinks for the piecewise parabolic potential model,

m i Region 1. Hence, the asympot: boundar condio 7 AlAely 1 same stucties e sotions
at z=—o0 in Region 1 becomes an initial condition zt 0 y '

for uin Region 2. The general solutions in Regions 1 and OUId. go on to construct2N kinks for N>2, but the cal- .
culations presented already serve to corroborate the earlier

Region 1: |u|<w/2, Region 2: w/2<u<3w/2.

41 kinks can be constructed by first noticing that, in order to
be of codimension oné.e., occur at isolated values, they
should be reversible under the transformatiBn above.
Since we can always translate by multiples of,2we look
for solutions that satisfy, for some unknovep, the condi-
tions:u(—=)—0, u(z,)=2m, andu”’(z,)=0, so thatu(z)
is in Region 1 for allz<0, in Region 2 for 6<z<z,, for

are. numerical results.
Uy(z) = A,"+ B, e+ C,c09 wz) + D;Sin(wz) To complete the analysis of the kinks, we would like to
mention that the short-wavelength instability of thensta-
and, providingu > wmin:=2/37, tionary continuous mode(1) due to the ternmu,,,, can be
easily removed by introducing an equivalent higher-order
Uy(z)=A,coq w,z+B,) +C,coq w,z+D>), dispersion via a mixed derivative terj,12].

To analyze the robustness of multikinks in realistic physi-
where  w®=6(/u?+2/3m+ u) and  wi,=6(x cal systems, we add to the right-hand side of EL).the
+ \/,u,2—2/377),Aj ,B;,C;, andDj are unknown coefficients. driven damped terrk — 6u;, whereF is an external dc force
Therefore, we can explicitly solve for the coefficients to findand ¢ is a damping coefficientsee, e.g., Refl5]). Impor-
u,(z) in closed form. This expression defines an implicit tantly, for each of the kinks so far found, it is possible to use
equation forz,; u,(z;)=3m/2. The value olu,(z;) and its  numerical continuation to trace curves that lie on sheets in
derivatives then defines initial conditionszt z;, hence de- the parameter space ,(5,F) corresponding to the existence
termining the constantd,, B;, C;, andD;. This in turn  of multikinks. For example, taking the explicitAkink so-
definesz, implicitly as u;(z,) =27. To have a 4r kink we  lution given by Eq.(3), a curve was computed gt=1/12 in
additionally requireu’(z,) =0, and so should only expect to the (F,v 8) plane with fixedv|= \J2/3, reaching a maximum
find zeros of this final quantity by varying. Hence, we can with respect tos at |v| §=0.069326. Taking the fixed value
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|v|6=0.05 from this curve the locus of kinks in the,F) calledhelicoidal termsin nonlinear models of DNA dynam-
plane can then be traced out, as depicted in Fig 5. ics[13]. In this case, the analysis is much simpler and, simi-
Three interesting features can be noted from this curvelar to the nonlocal SG equatiofi4], leads to the continuous
First, all kinks have developed oscillations around the equifamilies of multikinks parameterized ky. From the math-
librium close tou=4m. This is because, fof>0, the cor-  ematical point of view, for3<0 the origin changes from a
responding equation for travelling waves is no longer Hamil-saddle center to a saddle focus, and rigorous variational prin-
tonian or reversible,_ and the linearization around theciples[lS] give families of stable N kinks for all N>1.
asymptotic valueu, =sin™*F now hasthree stable eigenval- |, conclusion, we have developed the first analytical
ues two of which have non zero imaginary part. These 0Syheory of multikinks in strongly dispersive nonlinear sys-
cillations may be regarded aadiation that travels at the (o5 considering the important examples of the generalized

kink’s velocity as was earlier observed in direct numerical gy mogel with the sinusoidal and piecewise parabolic poten-
simulationg6]. Secondy and F have opposite sigor these 515 we have revealed, numerically and analytically, the

results. WherF andv have the same sign, only kinks with gyistence of discrete sets ofs kinks. We believe that
nondecayingoscillations in the tails can be found. Third, general features of multikinks and the physical mechanism

note that the computed curve ends at a point where a transfsy their formation are similar in many other strongly disper-
tion takes place involving a heteroclinic connection with  give nonlinear models.

~54. This suggests that kinks are possible for sufficiently

largeF. Y. Kivshar thanks O. M. Braun, A. S. Kovalev, B. Mal-
Finally, we mention that the cag<0 in Eq.(1) can also omed, M. Peyrard, and A. Ustinov for useful discussions.

occur in generalized nonlinear lattices provided we take intdAlan Champneys is indebted to the Optical Sciences Center

account the next-neighbor interactions, e.g., due to the sder hospitality and to the UK EPSRC for financial support.
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