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Origin of multikinks in dispersive nonlinear systems
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We developthe analytical theory of multikinksfor strongly dispersive nonlinear systems, considering the
examples of the weakly discrete sine-Gordon model and the generalized Frenkel-Kontorova model with a
piecewise parabolic potential. We reveal that there are no 2p kinks for this model, but there existdiscrete sets
of 2pN kinks for all N.1. We also show their bifurcation structure in driven damped systems.

PACS number~s!: 05.45.Yv, 05.50.1q, 05.70.Ln, 46.40.Cd
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Nonequilibrium dynamics of many physical systems c
be characterized by the creation and motion of topolog
excitations or defects. In particular, when a nonlinear sys
possesses a degeneracy of its ground state, such excita
are kinks, the simplest and probably most studied nonline
modes. The concept of kinks is vital for many physical pro
lems such as dislocation and mass transport in solids, cha
density waves, commensurable-incommensurable phase
sitions, conductivity, tribology, Josephson transmission lin
etc. @1#.

In application to problems in solid state physics, t
kink’s motion is strongly affected by the inherent lattice d
creteness. Earlier numerical simulations@2# of the kink’s mo-
tion in a lattice described by the discrete sine-Gordon~SG!
equation, also known as the Frenkel-Kontorova~FK! model
@1#, demonstrated a number of interesting features not
served in the dynamics of solitons of integrable~both con-
tinuous and discrete! models. In particular, Peyrard an
Kruskal @2# found that a single kink becomes unstable wh
it moves in a discrete lattice at sufficiently large veloci
whereas two~or more! kinks are stable and propagate
multikinks. The former effect is associated with resonant
teraction between a kink and radiation@3#, and resonance
are even observed experimentally@4#. In contrast, the latter
phenomenon, i.e., the formation of multikinks,‘‘ . . . has no
clear analytical explanation yet’’~see Ref.@1#!.

Recently, different physical systems have been stud
numericallywhere multikinks are found to play an importa
role. For example, multikinks are responsible fora mobility
hysteresisin a damped driven commensurable chain of
oms@5#. In arrays of Josephson junctions, instabilities of f
kinks lead to the generation ofbunched fluxon statesalso
described by multikink modes@6#.

The main purpose of this paper is to provide the s
towardsan analytical theory of multikinksin strongly disper-
sive nonlinear nonintegrable systems, including the anal
of the existence and codimension ofN2kink states. In par-
ticular, we consider a weakly discrete SG model and dem
strate the existence ofa finite number of multikinksdue to a
higher-order dispersion. We also findanalytical solutions for
multikinks and describe the effect of an external field a
damping on their existence and qualitative features.

We consider the dynamics of a commensurable chain
atoms in a periodic substrate potential. In a normalized~di-
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mensionless! form, the equations of motion for the atom
displacementsun can be written as

ün5Vint8 ~a01un112un!2Vint8 ~a01un2un21!2Wsub8 ~un!,

where Vint(u) is an effective interaction potential with th
equilibrium distancea0, andWsub(u) is a substrate potentia
with period a. For small anharmonicity, i.e., whenuun11
2unu!a0, the potentialVint(u) can be expanded into a Tay
lor series to yield~see details in Ref.@1#!: ün2g(un11

1un2122un)1Wsub8 (un)50, where g[Vint9 (a0). In the
quasi-continuum limit, taking into account a higher-ord
dispersion, we obtain the normalized equation

utt2uxx2buxxxx1Wsub8 ~u!50, ~1!

whereW(u) has rescaled period 2p and, for harmonic inter-
action,b5a2/12.

Equation~1! takes into account the effect of lattice di
creteness through a fourth-order dispersion term, and fob
50 and Wsub8 (u)5sinu, it transforms into the well-known
exactly integrable SG equation that has an analytical solu
for a single 2p kink moving with velocity v, u
54 tan21$exp@(x2vt)/A12v2#%. Similar kinks exist for a
rather general topology of the substrate potentialWsub(u)
@1#. However, our aim in this paper is to studya class of
localized solutionsof Eq. ~1! for bÞ0 in the form of 2pN
multikinks for N.1.

First, following the original study of Peyrard and Krusk
@2#, we consider the harmonic substrate potential

Wsub~u!512cosu. ~2!

We look for kink-type localized solutions of Eq.~1! that
move with velocityv(v2,1), i.e., we assumeu(z)5u(x
2vt). Linearizing Eq.~1! and takingu(z);elz, we find
eigenvaluesl of the form,

l25
1

2b
@~v221!6A~12v2!214b#,

so that forb.0 there always existtwo real and two purely
imaginary eigenvalues. Thus, the originu50 is a saddle-
center point and hence kinks, which are homoclinic solutio
to u50(mod2p), should occur forisolated valuesof v for
2551 ©2000 The American Physical Society
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fixed b ~see Refs.@7# and@8#!. That is they are of codimen
sion one. Moreover, this codimension is only true if the s
lutions are themselves reversible, that is invariant under
of the transformations:

R1 : u~mod2p!→2u~mod2p!, u9→2u9, t→2t,

R2 : u8→2u8, u-→2u-, t→2t,

where prime stands for differentiation with respect toz.
To find all solutions of this type, first we fix b51/12,

which corresponds toa51. Then, we perform numerica
shooting on the ordinary differential equation foru(z) using
a well-established Newton-type method for homoclin
heteroclinic trajectories in reversible systems~see Ref.@9#!.
The first result is that there existsno 2p-kink solution at all,
except in the artificial limitv2→2` ~see comment below!.
Instead, we find a discrete family of 4p-kinks; specifically
there existonly four such solutionsat four different values of
v. The first solution has an analytical form@10#

u~z!58 tan21exp$~3b!1/4z%, ~3!

where v25122Ab/3, i.e., for our choice ofb, v4p
(1)

5A2/3. Other values are: v4p
(2)50.59498 . . . , v4p

(3)

50.42373 . . . , andv4p
(4)50.21109 . . . . All these solutions

are presented in Fig. 1. We may regard this discrete famil
part of an infinite sequence of bound-states of two 2p kinks
that converges to the limit of infinite separation at a value
v2,0. Actually, the key parameter ism512v2, and further
numerical evidence reveals that the bound states conver
m5` at which value a 2p kink exists only formally.

In addition to the 4p kinks, numerics further revealsv
values at which 2pN kinks occur for allN.2. Figure 2
shows several examples of 6p and 8p kinks. According to a
dynamical systems theory result@7#, on the existence o
bound states of homoclinic solutions to saddle-center e
libria in reversible Hamiltonian systems, again thinking
the 4p kinks as bound states of 2p kinks, one should expec
to seeprecisely two6p kinks for each4p kink. These would
occur at v6p

( i ),6 satisfying v6p
( i )2,v4p

( i ) ,v6p
( i )1 ; all eight of

which are depicted in Fig. 2~a!. Moreover, there would be
two infinite sequences of8p kinks at v8p

( i , j )6 such that
v8p

( i , j )2→v4p
( i ) from below as j→` and v8p

( i , j )1→v4p
( i ) from

above.Our numerical simulations have revealed precise
this structure of all multikink families.

FIG. 1. The four 4p-kink solutions of Eq.~1! with Wsub8 (u)
5sinu propagating at the velocity values given in the legend.
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Finally, it appears that the above structure islargely inde-
pendentof b. Figure 3 shows the results of continuatio
~using the method for homo/heteroclinic orbits in th
boundary-value software AUTO@11#! of the four 4p kinks
in the (v,1/Ab) plane. These curves arealmost identicalto
those obtained numerically in Ref.@2# for the discrete SG
equation. Note that no curve passes throughv51, they only
reach there asymptotically asb→0. In the process the slop
of each kink at its midpoint steepens, so that the solut
becomes singular in the limit.

It is important that the above numerical results may
verified by the construction ofexact solutions in closed form
when the substrate potential is approximated by a piecew
parabolic potential that generates in Eq.~1! the effective
force,

Wsub8 ~u!

5H u22np:~2n21!p1p/2,u,2np1p/2,

~2n11!p2u:2np1p/2,u,~2n11!p1p/2.

For simplicity we fixb51/12 and then look for kinks mov
ing with velocity v(m512v2), by solving the piecewise-
linear equation foru(z). This defines a four-dimensional dy
namical system in the phase space (u,u8,u9,u-)P
(2p/2,3p/2#3R3. The phase space is separated into t
distinct domains:

FIG. 2. Examples of~a! 6p and~b! 8p kinks of Eq.~1! with the
potential~2! at the velocity values given in the legend.

FIG. 3. Two-parameter continuation of 4p kink solutions for
the model~1! with the harmonic nonlinearity~2!.
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Region 1: uuu,p/2, Region 2: p/2,u,3p/2.

4p kinks can be constructed by first noticing that, in order
be of codimension one~i.e., occur at isolatedv values!, they
should be reversible under the transformationR1 above.
Since we can always translate by multiples of 2p, we look
for solutions that satisfy, for some unknownz2, the condi-
tions:u(2`)→0, u(z2)52p, andu9(z2)50, so thatu(z)
is in Region 1 for allz,0, in Region 2 for 0,z,z1, for
some unknownz1,z2, and is in Region 1 again for allz1
,z,z2.

The boundary condition can be satisfied by noticing t
such solutions atz50 ~the first point of transition betwee
Regions 1 and 2! satisfyu(0)5p/2, u8(0)5lp/2, u9(0)
5l2p/2, and u-(0)5l3p/2, where l256(Am212/3p
2m) is the unique real positive eigenvalue of the linear s
tem in Region 1. Hence, the asymptotic boundary condit
at z52` in Region 1 becomes an initial condition atz50
for u in Region 2. The general solutions in Regions 1 an
are:

u1~z!5A1elz1B1elz1C1cos~vz!1D1sin~vz!

and, providingm.mminªA2/3p,

u2~z!5A2cos~v1z1B2!1C2cos~v2z1D2!,

where v256(Am212/3p1m) and v1,2
2 56(m

6Am222/3p),Aj ,Bj ,Cj , andD j are unknown coefficients
Therefore, we can explicitly solve for the coefficients to fi
u2(z) in closed form. This expression defines an impli
equation forz1 ; u2(z1)53p/2. The value ofu2(z1) and its
derivatives then defines initial conditions atz5z1, hence de-
termining the constantsA1 , B1 , C1, andD1. This in turn
definesz2 implicitly as u1(z2)52p. To have a 4p kink we
additionally requireu19(z2)50, and so should only expect t
find zeros of this final quantity by varyingv. Hence, we can

FIG. 4. The functionK(v) for multikinks of Eq.~1! with piece-
wise parabolic potential. Inset: the corresponding 4p kinks at the
associatedv values given in the legend.
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define a ‘‘test function’’ for 4p kinks K(v;z1 ,z2)
ªu29(z2). Using the above construction, thisK can be writ-
ten in closed form in terms ofv, z1, andz2. The unknown
transition pointsz1,2 are the solution to given transcenden
equations, in each case only the first solution of which h
meaning.

Figure 4 shows a graph ofK as a function ofm512v2

P(mmin,1), which has been computed using MAPLE with t
implicit equations solved for their smallest positive sol
tions. The five zeros ofK correspond to 4p kinks, graphs of
which are shown in the insert to the figure. These zeros oc
for v50.64064609, 0.49870155, 0.37835717, 0.266344
0.14477294. It is also possible to construct solutions form
,mmin in a analogous manner, but with the solution in R
gion 2 replaced by one corresponding to complex eigen
ues. This gives the additional solution forv50.833706.

In this way, we findanalytically a finite set ofv values
giving 4p kinks for the piecewise parabolic potential mode
having qualitatively the same structureas the solutions
found numerically for the sinusoidal nonlinearity~2!. One
could go on to construct 2pN kinks for N.2, but the cal-
culations presented already serve to corroborate the ea
numerical results.

To complete the analysis of the kinks, we would like
mention that the short-wavelength instability of thenonsta-
tionary continuous model~1! due to the termuxxxx can be
easily removed by introducing an equivalent higher-ord
dispersion via a mixed derivative term@1,12#.

To analyze the robustness of multikinks in realistic phy
cal systems, we add to the right-hand side of Eq.~1! the
driven damped termF2dut , whereF is an external dc force
and d is a damping coefficient~see, e.g., Ref.@5#!. Impor-
tantly, for each of the kinks so far found, it is possible to u
numerical continuation to trace curves that lie on sheets
the parameter space (v,d,F) corresponding to the existenc
of multikinks. For example, taking the explicit 4p-kink so-
lution given by Eq.~3!, a curve was computed atb51/12 in
the (F,vd) plane with fixeduvu5A2/3, reaching a maximum
with respect tod at uvud50.069326. Taking the fixed valu

FIG. 5. The kink’s velocityv,0 and maximum amplitude
against external forceF.0 for the simplest 4p kink with vd
50.05. Note that each limb of the curve spirals back on itself. T
insets illustrate example solutions on the locus.
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2554 PRE 61ALAN CHAMPNEYS AND YURI S. KIVSHAR
uvud50.05 from this curve the locus of kinks in the (v,F)
plane can then be traced out, as depicted in Fig 5.

Three interesting features can be noted from this cu
First, all kinks have developed oscillations around the eq
librium close tou54p. This is because, ford.0, the cor-
responding equation for travelling waves is no longer Ham
tonian or reversible, and the linearization around
asymptotic valueu!5sin21F now hasthree stable eigenval
ues, two of which have non zero imaginary part. These
cillations may be regarded asradiation that travels at the
kink’s velocity, as was earlier observed in direct numeric
simulations@6#. Second,v and F have opposite signfor these
results. WhenF andv have the same sign, only kinks wit
nondecayingoscillations in the tails can be found. Third
note that the computed curve ends at a point where a tra
tion takes place involving a heteroclinic connection withu
'5p. This suggests thatp kinks are possible for sufficiently
largeF.

Finally, we mention that the caseb,0 in Eq.~1! can also
occur in generalized nonlinear lattices provided we take i
account the next-neighbor interactions, e.g., due to the
s.
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calledhelicoidal termsin nonlinear models of DNA dynam
ics @13#. In this case, the analysis is much simpler and, sim
lar to the nonlocal SG equations@14#, leads to the continuous
families of multikinks parameterized byv. From the math-
ematical point of view, forb,0 the origin changes from a
saddle center to a saddle focus, and rigorous variational p
ciples @15# give families of stable 2pN kinks for all N.1.

In conclusion, we have developed the first analytic
theory of multikinks in strongly dispersive nonlinear sy
tems, considering the important examples of the general
FK model with the sinusoidal and piecewise parabolic pot
tials. We have revealed, numerically and analytically, t
existence of discrete sets of 2pN kinks. We believe that
general features of multikinks and the physical mechan
for their formation are similar in many other strongly dispe
sive nonlinear models.
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